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Abstract 

A novel approach for estimating transient heat release rate from fire images and video using 
deep learning techniques is presented. The heat release rate (HRR) is a critical parameter in 
characterizing the fire hazard and thermal effects of a burning item. It is an effective indicator 
of the fire growth rate and fire hazard that is used extensively in building fire safety design. 
However, for outdoor fires, heat release rate measurements are usually not available due to 
lack of measurement equipment.  

The goal of this work is to develop and demonstrate a novel technique based on “image 
calorimetry” for predicting heat release rate using video data and recurrent neural network 
models. The proposed methodology only requires video camera data and can be extended to 
outdoor fire experiments. Results of the trained neural network model on the investigated set 
of experiments conducted in a laboratory setting, show excellent comparison between 
predicted and temporally evolving heat release rate measurements, with an overall accuracy 
score of 0.94.  

Keywords 

Data Intensive Research; Deep Learning; Fire Calorimetry Database; Fire Heat Release Rate; 
Wildland Urban Interface.  
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1. Introduction 

The fire heat release rate (HRR) is considered one of the more critical parameter in 
characterizing the behavior of a fire and thermal effects of a burning item. It is an effective 
indicator of the fire growth rate and fire size that is used extensively in both building fire safety 
design and fire research [1]-[5].  However, for outdoor fires, heat release rate data is not 
available due to lack of calorimetric techniques suitable for this environment. Conventional 
techniques for estimating HRR and the challenges in using these methods for outdoor fires are 
discussed in the following sub-sections, followed by the overall goals for this report. 

1.1. Measuring Heat Release Rate inside a laboratory 

Conventionally, the fire HRR is measured in a laboratory through two principal approaches:  

1) measuring the fuel mass burning rate and  

2) oxygen consumption calorimetry.   

For fuels whose heat of combustion (𝛥𝐻𝐶) is known, the burning rate (𝑚̇𝑓) can be measured 

using a mass balance (non-gaseous fuels) or using a flow rate meter (gaseous fuels). Then the 
HRR can be calculated as: 

                                                                    𝑯𝑹𝑹 = 𝒎̇𝒇𝜼𝜟𝑯𝑪                                                                   ( 1 ) 

where 𝛥𝐻𝐶  is the heat of combustion in units of kJ/kg, and 𝜂 is the combustion efficiency. 
Major issues with this method however, are that the values of 𝛥𝐻𝐶  and 𝜂 are unknown for 
complex fuel.  

Oxygen consumption calorimetry for estimating HRR is more widely used for fires and fuels of 
different scales. Assuming a constant heat of oxidation for most common fuels, and complete 
combustion, the 𝐻𝑅𝑅 of an arbitrary fuel is given by  

                                                                  𝑯𝑹𝑹 = 𝜟𝒎̇𝑶𝟐
𝜟𝑯𝑶𝟐                                                                                           ( 2 ) 

where 𝛥𝑚̇𝑂2
 is the oxygen consumption in a fire in units of kg/s, and 𝛥𝐻𝑂2

 is the heat 

generated per unit mass of oxygen consumed in units of kJ/kg. The heat of oxidation 𝛥𝐻𝑂2
 is 

assumed constant at 13.1 MJ/kg, regardless of fuel. The oxygen consumption can be measured 
if the experiment is performed in a controlled laboratory setting under an exhaust hood [6]. 
Equation 2 can then be used to estimate the heat release rate of the fire. However, many fire 
tests are too large to be performed under a conventional hood. The capacity of the hood may 
sometimes limit the size of the experiments that can be safely conducted inside a laboratory.  
Other fire experiments may corrode the sensitive measurement equipment or may produce 
toxic gases that can make it unsuitable for indoor laboratory testing.  
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There are other scenarios such as wind driven fire experiments, such as wildland-urban 
interface (WUI) prescribed burns, which cannot be performed in a controlled laboratory setting, 
and hence, these experiments do not have access to a hood for oxygen calorimetry. For such 
scenarios, it is very difficult to estimate the time dependent heat release rate.  Furthermore, 
the time dependent heat release rate is often prescribed as an input parameter in a 
Computational Fluid Dynamics (CFD) fire model; the lack of reliable heat release rate data 
makes it difficult to conduct numerical simulations of the fire event. There is clearly a need for 
an accurate methodology for estimating HRR for outdoor fires. 

1.2. Empirical Methods for estimating Heat Release Rate 

For an axisymmetric fire source, the flame height can be estimated using the Heskestad 
correlation [7], expressed as follows: 

                                                              𝑳/𝑫 = 𝟑. 𝟕 𝑸̇∗𝟐/𝟓 − 𝟏. 𝟎𝟐                                                                    (3) 

where, L represents the flame height, D is the flame diameter and 𝑄̇∗ is the non-dimensional 
heat release rate, defined as follows: 

𝑄̇∗ =  
𝑄

𝜌∞𝑐𝑝𝑇∞√𝑔 𝐷5

̇
 

Here, 𝜌∞ is the ambient density (kg/m3), 𝑐𝑝 is the specific heat of air at constant pressure 

(kJ/kg/K),  𝑇∞ is the ambient temperature (K), and 𝑔  is acceleration due to gravity (m/s2).  

The Heskestad correlation Eq. (3) can be inverted to obtain the heat release rate 𝑄̇, as shown 
below: 

                                                          𝑄̇ =   [(
1

0.235

𝐿

𝐷
 + 4.34) 𝐷]

2.5
                                            (4) 

The equation above relates the heat release rate (kW) to the flame height L (m) and flame 
diameter D (m).  Assuming that the temporally varying flame height and flame diameter are 
known or can be estimated from an image or a video of an experiment, this equation can be 
used to predict the heat release rate of a fire.  

Appendix A presents a case study of estimating heat release rate using the Heskestad’s 
correlation for a simple calorimetry confirmation burner experiment. It is demonstrated that 
estimating flame length and flame diameter accurately from images can be challenging and can 
result in large errors in the estimated HRR. Similar conclusions have been made by other 
authors [8]-[15]. There is clearly a need for a more robust method to estimate heat release 
rate, especially for outdoor fires. 

Orloff & DeRis [16] related the transient heat release rate of a fire to its temporally evolving 
volume, as shown below: 

𝑄̇ =  𝛾 𝑉(𝑡) 
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For steady pool fires, the proportionality constant parameter 𝛾 was estimated to be 1200 
kW/m3, while for highly turbulent jet, the volume term was raised to power of 1.11. Estimating 
the temporally evolving flame volume is a challenging task from fire video data. As a result, 
estimating HRR using the above equation is quite challenging as well. 

The goal of this report is to develop a methodology for estimating the heat release rate of a fire 
by using its recorded video data and deep learning techniques. There are a few publications [8], 
[9], [17]-[21] that make use of video recordings to estimate flame height and heat release rate. 
Omiotek and Kotyra [18] combined flame image processing with a deep convolutional neural 
network for identifying undesired combustion states. Bonner et. al [19] presented an algorithm 
for estimating the fire volume using two cameras, located at an approximately right angle to 
each other. They subsequently used the temporally evolving volume to estimate the heat 
release rate of turbulent jet fires. Wang et. al [20] used convolution neural networks to 
estimate heat release rate. They used single images for estimating heat release rate instead of 
the entire video data. They [21] also proposed the use of stereo camera and deep learning to 
estimate the distance between the fire and the camera.  

Evans et. al [22] attempted to correlate the heat release rate of the 1991 Kuwait oil field fires to 
their flame height. The total heat release rate of a fire is composed of two parts: a convective 
heat release rate fraction and a radiative heat release rate fraction. Sivathanu and Gore [23] 
have shown in laboratory studies that the radiant heat flux can be used to estimate the total 
radiative heat release rate fraction of jet flames.  

1.3. Goals for this report 

In this report we develop and demonstrate a novel technique based on “image calorimetry”, to 
estimate heat release rate from fire video data and deep learning technique.  This new 
technique is dependent on the availability of video data which is usually readily available for 
both indoor and outdoor fires. We demonstrate that the methodology can be used to predict 
heat release rate for indoor as well as outdoor fires.   

In comparison, conventional techniques such as those based on oxygen consumption 
calorimetry requires equipment that is not available for outdoor fires. Similarly, mass loss rate 
measurements for outdoor fires can result in large errors, especially in the presence of ambient 
wind.  Table 1 provides a summary of the scenarios where conventional techniques cannot be 
used for estimating heat release rate. Table 1  also indicates that “image calorimetry” method 
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can be used both inside and outside the laboratory, with or without ambient wind, since it is 
only dependent on the availability of video data.   

The impact of this work is the development and demonstration of a novel technique “image 
calorimetry”, for estimating the heat release rate for outdoor fires with or without ambient 
wind, where conventional techniques fail to provide HRR measurements. 

Table 1. Comparison of conventional techniques for estimate HRR with Image Calorimetry technique 

 

A deep learning model based on recurrent neural networks [24] was developed to ingest the 
sequential images extracted from a fire video obtained from a single camera. The model was 
trained on 147 experiments for which video data and HRR measured using oxygen depletion 
calorimetry were available. Details of the neural network model will be discussed in Section 2.  

Once the deep learning model was trained, it was validated on a set of experiments that were 
independent of the training set. Accuracy of the predicted results were compared with 
measured values and the deep learning model was iteratively improved (Section 3). The goal of 
this research is to use the trained model on other full scale test images and videos from 
outdoor experiments with or without an ambient wind to predict the time varying heat release 
rate.  Finally, in Section 4 we summarize the major conclusions of this project as well as discuss 
future opportunities and challenges. 
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2. Methods 

In most fire tests or actual fire incidences, video data is often available. Wide-spread use of 
Closed Circuit Television (CCTV) cameras and mobile phone cameras can record the flame 
spread patterns and smoke movement. Data can also be obtained from airborne systems 
including drones as well as satellite images. The videos include information on fire behavior and 
characteristics, such as flame size, height, color, brightness, and oscillation frequency, as well as 
their time evolution. In depth evaluation of the flame images can deliver valuable information 
about fire development. With the development of artificial intelligence (AI) technology, 
especially deep learning methods, the capability of image analysis has been significantly 
improved. This section will develop the methodology for using fire scene images to predict the 
transient HRR of any burning item, with application to outdoor fires with or without ambient 
wind.  

2.1. Fire Calorimetry Database (FCD) 

AI models require large number of fire-scene images labelled with their transient HRR values for 
training [24]. The NIST Fire Calorimetry Database (FCD), is an online public resource [25] 
containing the results of fire experiments conducted at the National Fire Research Laboratory 
(NFRL).  The FCD consists of data augmented video, images, plots as well as tabulated data from 
many fire experiments. Each experiment is described with metadata, time dependent 
calculations based on dozens of sensors, and input parameters, each with quantified 
uncertainty. 

The Fire Calorimetry Database was adopted for training a deep learning model, which relates 
the fire images and video with the evolution of fire HRR from ignition to burnout, measured 
through oxygen consumption calorimetry. Various fire scenarios, such as single burning items, 
fully furnished rooms, controlled burners, well-characterized fuels, and fuels of unknown 
composition, with fire HRR ranging from 50-20,000 kW, are part of the Fire Calorimetry 
Database [25].  

2.1.1. Extracting Labeled Images from Video Data 

We chose to focus on experiments in the NIST FCD [25]  that were part of two projects: 

1)  Transient Combustibles 2018 

2) Multiple Item Transient Combustibles 2020. 

The two projects were chosen because they included experiments on a variety of burning 
objects including gas burners, cardboard boxes, wood pallets and plastic cart with laptop and 
printer. Furthermore, the burning objects in these experiments had an aspect ratio (ratio of 
width to breadth) close to one, and the observed fire was mostly symmetric. This results in 
approximately symmetric flame shapes, where the dynamics could be reasonably captured with 
a single video recorder. The Transient Combustibles 2018 dataset consists of 107 experiments 
with peak HRR ranging between 0 - 3.1 MW. The Multiple Item Transient Combustibles 2020 
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dataset consisted of 41 experiments with peak HRR ranging between 0 - 4.2 MW. The duration 
of each experiment also varied significantly as summarized in Table 2. Images were extracted 
from video data of each experiment at the sampling rate indicated in Table 2.  

Table 2. Datasets used for the analysis. 

Dataset #  of 
Exp 

pHRR 
(MW) 

Duration 
(minutes) 

# of 
Frames 

Frame Sampling 
Interval (s) 

Transient Combustibles 
2018 

107 0.0 - 3.1 3 - 103 4667 100 s, 

1 s (>200kW) 

Multiple Item Transient 
Combustibles 2020 

41 0.0 - 4.2 17 - 120 8643 100 s, 

5 s (>200kW) 

Combined Dataset 148 0.0 - 4.2 3 – 120 13310 100, 5, 1 

 

The Fire Calorimetry Database contains raw video data for each of the experiments in the two 
datasets, along with time dependent HRR measurements. Images were extracted from the 
video data along with their labels (HRR) at specific intervals as shown in Table 2. Reviewing 
images and labels extracted at 100s interval, indicated that we were missing the short duration 
high heat release rate events. More data was therefore collected at 1 s or 5 s intervals, but this 
was restricted to HRR values greater than 200 kW.  

Some video data can include long idle period before the ignition event happens. In other cases, 
video data was collected well after the extinction. Image extraction was however limited to the 
period between the ignition and extinction, to avoid collecting large amounts of data with zero 
HRR value.  Data collection at the two different frequencies allowed us to roughly balance the 
dataset with both low and high values of HRR. A total of 4667 labeled frames were collected for 
the 107 experiments that were part of the Transient Combustibles 2018 dataset. Similarly, we 
collected 8643 labeled images for the Multiple Item Transient Combustibles 2020 dataset. All 
images collected from the two datasets were combined, and subsequently used to train and 
validate the neural network models discussed in the next section.  

Figure 1 shows a histogram of the heat release rate for the various frames extracted from the 
Multiple Item Transient Combustibles 2020 dataset.  The plot shows the count of images with 
labels that fall within each bin of the histogram. This plot indicates that there are more frames 
at lower heat release rate and fewer frames at the higher heat release rate. The collected data 
has a small data imbalance issue, in-spite of the fact that we attempted to collect more frames 
at higher frequencies for the high heat release cases. 
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Figure 1. Histogram plot of the Heat Release Rate for the labeled images collected from the Multiple Item 
Combustion Calorimetry Dataset. The plot shows the count of images with labels that fall within each bin. 

Figure 2 shows the number of frames extracted for each of the 41 experiments that are part of 
the Multiple Item Transient Combustibles 2020 dataset.  The duration of the experiments in this 
test series varies between 17-120 minutes. This results in variability in the number of frames 
that were extracted from each experiment.  

 

Figure 2. Number of labeled frames extracted for each of the 41 experiments that are part of the Multiple Item 
Combustion Calorimetry 2020 dataset. 

2.1.2. Standardizing Pixel Size 

The 148 experiments in this study were conducted under different hoods at the NIST National 
Fire Research Laboratory as seen in Table 3. The Transient Combustibles 2018 experiments 
were performed under the 0.5 m and 3 m hoods, while the Multiple Item Transient 
Combustibles 2020 experiments were performed under the 3 m and 10 m hoods. The location 
of the video recorder relative to the burning object also varied in these experiments. As a 
result, the pixel size in the images varied from one experiment to another, as summarized in 
Table 3. It is critical that the extracted labeled frames have a consistent pixel size. A pre-
processing step was required to convert the pixel size of each image to the base (standard) 
pixel size. A base (standard) pixel size of 3.95 mm was chosen for pre-processing the images. 
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Table 3. Hood size, image shape and pixel size (mm) for the various experiments that are part of the current 
study 

 
# of 
Exp 

# of 
Frames 

Hood 
(MW) 

Image        
Shape 

pixel size (mm) 

Transient Combustibles 
2018 

107 4667 0.5, 3 1080 x 1920 x 3 2.28, 3.71, 3.83 

Multiple Item Transient 
Combustibles 2020 

41 8643 3, 10 1080 x 1920 x 3 3.60, 3.95 

 

When the pixel size of an image was smaller than the base pixel size, we padded the image on 
all four sides and then resized the image to increase the pixel size of the image. Similarly, if the 
pixel size of the image was larger than the base pixel size, we cropped the image on all four 
sides, and subsequently resized the image to decrease the pixel size.  This process ensures that 
all the images have a consistent pixel size. The images along with their labels were pre-
processed and are now in consistent format for use with neural network models, discussed in 
the next section. 

2.2. Neural Networks for Estimating HRR 

 

 

Figure 3. Image of a large fire (large HRR) on the left, and an image of smaller fire (small HRR) on the right 

Figure 3 shows an image of a large fire on the left, as well as an image of a smaller fire on the 
right. Human beings can very quickly and accurately classify the image on the left as a large fire 
(large HRR), and the image on the right as a small fire (small HRR). This is because the neurons 
in our brain have been trained since childhood to classify fires. The training process took a long 
time, but now that the neurons have been fully trained, we can quickly and accurately classify 
fires by just looking at the images.  
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However, the neurons in our brain have not been taught to quantify the HRR of a fire based on 
a fire image. This is because they have not been exposed to appropriate data. In the next few 
sections, we describe an approach for constructing a neural-network model and train it on 
labeled image data for predicting heat release rate.  

2.2.1. Challenges with Neural Networks 

Computers see fire images as a collection of pixels with value ranging between 0-255. Figure 4 
shows a coarse resolution image of a fire, along with pixel values superimposed on the image. 
Moreover, a computer does not recognize the ordering of the pixels in rows and columns. 
Instead, the computer flattens out the array of pixels into a single vector.  

 

Figure 4. Coarse resolution, gray scale rendering of the fire image shown in Figure 3 (left sub-image), along with 
the pixel values that range between 0-255. 

The challenge for a neural network model is to take this vector of numbers and quantify the 
HRR of the corresponding image. A human brain would not be able to process a large vector of 
numbers (of length ~ 6 million) as shown in Figure 4 , and quantify the HRR or even classify the 
image as a large fire or a small fire. 

2.2.2. Processing Sequence of Images 

Convolution Neural Network (CNN) models [24], [26] can take a single image and attempt to 
quantify the heat release rate for that image as shown schematically in Figure 5. A typical video 
can be broken down into a sequence of images. However, the basic Convolution Neural 
Network model does not take advantage of the fact that each image is part of a video. A typical 
Convolution Neural Network model does not know about any of the other images in the video 
and can be described as a static model. Such models do not maintain any context from previous 
images and there is no ordering of the images either.  
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Figure 5. Convolution Neural Networks (CNN) models 

2.2.3. Recurrent Neural Network (RNN) 

The approach used in the current work employs a dynamic memory model [24], [26] as shown 
in Figure 6. The input to such a model is the entire sequence of images that are part of a video. 
In a dynamic memory model, a memory state is maintained to gather information from 
previous images of a video. As a result, the model maintains context and has information about 
the order of the images. We deploy a bi-directional model that keeps track of the images that 
came before the current image, as well as those that came after the current image.  

 

Figure 6.Recurrent Neural Network (RNN) model for analyzing video input data 

The entire dataset of 148 experiments was split randomly into a training set of 118 experiments 
and a validation set of 30 experiments. This was accomplished through a random 80-20 train-
test split. The random nature of the split does not distinguish between large fires or small fires. 
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The train set was used to train the Recurrent Neural Network (RNN) model shown in Figure 6. 
Regularization techniques such as L2, dropout as well as image augmentation techniques 
(translation, rotation) were used to reduce model overfitting. Once the model was trained, the 
validation dataset was used to test the model. Since the model has never seen the validation 
set during the training process, it represents a blind test for the model. We next present results 
from the model validation study. 

 



NIST IR 8521 
May 2024 

12 

3. Results and Discussion 

The trained neural network model was used to predict the time dependent heat release rate of 
various experiments that were part of the validation set. The model has never seen the 
experiments that are part of the validation set, during the training process, hence the 
prediction on these experiments is a good measure of the validity / accuracy of the model.  

3.1. Heat Release Rate of a Wood pallets and cardboard box experiment 

Figure 7 (left sub-figure) shows a frame corresponding to the peak heat release rate of a fire 
experiment involving wood pallets and 8 cardboard boxes with paper (Exp ID 1576165873). This 
experiment was part of the Multiple Item Transient Combustibles 2020 dataset. A total of 1475 
frames were extracted from the video of this experiment.  
 
Figure 7 (right sub-figure) shows the time dependent measured HRR using oxygen consumption 
calorimetry (red solid line with symbols). The temporally evolving HRR shows a double hump 
profile with a peak HRR values of ~3.4 MW.  The black error bars represent the uncertainty in 
the oxygen consumption calorimetry measurement data (see Figure 15 in reference [25]). The 
green dashed line represents the prediction from the RNN model.  
 

     

Figure 7. A trained neural network model was used to predict the time-dependent Heat Release Rate of Wood 
pallets and cardboard box (FCD experiment ID 1576165873) shown in the left sub-figure. The right sub-figure 

shows a comparison between the measured and predicted HRR values. 

The neural network predictions were found to closely follow the measured HRR. Our results 
indicate good comparison between model predictions and measured time dependent HRR. The 
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peak HRR is also predicted very accurately, along with the double hump profile of the HRR 
curve.  
  
Table 4 provides a summary of the key results of the neural network analysis. The accuracy of 
the prediction as measured by an R2 score for this specific experiment was 0.95.  Table 4 also 
provides the final model loss, mean absolute error (MAE), and the % uncertainty for the wood 
pallets and cardboard box experiment. 

Table 4. Summary table for the wood pellets and 8 cardboard boxes with paper experiment. 

# of frames Loss MAE 
(kW) 

R2 % uncertainty 

1475 28920 115 0.95 4.0 % PHRR 

3.2. Heat Release Rate of Natural Gas Calibration Burner 

This sub-section shows results for natural gas calibration burner experiment (Exp ID 
1536760151) that was part of Transient Combustibles 2018 dataset. The experiment was 
performed with a tube gas burner, where the natural gas flow rate was adjusted to various 
levels during the experiment.  

Figure 8 (left sub-figure) shows a frame corresponding to the peak HRR, while Figure 8 (right 
sub-figure) shows the time dependent measured HRR using oxygen consumption calorimetry 
(red solid line with symbols) during this experiment. The black error bars represent the 
uncertainty in the measurement data (see Figure 15 in reference [25]). The green dashed line 
represents the prediction from the RNN model. 

The neural network predictions were found to closely follow the measured HRR. Our results 
indicate good comparison between model predictions and measured time dependent HRR. 
Table 5 provides a summary of the key results of the neural network analysis. The accuracy of 
the prediction as measured by an R2 score was 1.0 for this experiment. Table 5 also provides 
the final model loss, mean absolute error (MAE), and the % uncertainty for the natural gas 
calibration burner experiment. 
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Figure 8. A trained neural network model was used to predict the time-dependent Heat Release Rate of a 
Natural Gas Calibration Burner experiment (FCD experiment ID 1536760151) shown in the left sub-figure. The 

right sub-figure shows a comparison between the measured and predicted HRR values. 

Table 5. Summary table for the calibration burner experiment. 

# of frames Loss MAE 
(kW) 

R2 % uncertainty 

1297 2126 33 1.0 4.0 % PHRR 

3.3. Heat Release Rate for all the experiments - Summary 

Figure 9 shows a comparison of model predicted HRR (kW) values and experimental 
measurements for all the 13310 frames that were extracted from the 148 experiments. The 
training set experiments are shown in blue, while the validation set experiments are shown in 
orange. The red dotted line represents the 1:1 line. A perfect model would have all the data 
points aligned with the 1:1 line.  Results indicate that the neural network model predictions are 
well correlated with the measurement data. 
 

Each of 13310 data points on this plot represents a frame that was obtained from the video 
data. Figure 10 shows the same data along with uncertainty bars in the measurement data. For 
this plot, the measurement uncertainty was also used for the model predictions error. Results 
indicate that the neural network model was able to learn the complex relationship between the 
video data and the HRR measurements. Results for the validation experiments also lie along 
with red dotted 1:1 line.  
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Figure 9. Comparison of model predicted and measured HRR for the 13310 frames that were extracted from the 
147 fire experiments. Results indicate that the neural network model predictions are well correlated with the 

measurement data. The dotted red line represents the 1:1 line.   

 

 

Figure 10. Comparison of model predicted and measured HRR, including error bars for the 13310 frames that 
were extracted from the 147 fire experiments. Results indicate that the neural network model predictions are 

well correlated with the measurement data. The dotted red line represents the 1:1 line.   
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A few frames that are part of the validation set are seen to diverge away from the 1:1 line in 
Figure 10. These frames are highlighted by a red circle in the left sub-figure of Figure 11. All of 
these frames came from a single experiment in the validation set. This experiment (ExpID 
1536596869) involved the burning of a work cart with laptop and printer. During this 
experiment, the fire started on the top level of the work cart, which resulted in melting of the 
plastic. As the fire progresses, dripping was observed, and a liquid pool formed on the lower 
level of the work cart. Subsequently, the pool on the lower level ignited as well, the top-level 
collapsed, followed by burning of the entire cart until all the combustibles were consumed. This 
is a rather unique experiment in the validation set, and the neural network model did not have 
the opportunity to learn from a similar experiment in the training set. Removing this 
experiment from the validation set, increased the R2 score on the validation set from 0.94 to 
0.96. 

 

Figure 11. Left sub-figure shows the outlier frames marked by a red circle. All these frames were part of a single 
experiment in which a laptop / printer placed on a plastic work cart was burnt. 

R2 scores for the training set was 0.99, while that for the validation set for 0.94 as shown in 
Table 6.  Since the only input required to generate predictions from the neural network model 
is the video data, the trained and validated model can be extended to predict heat release rate 
for outdoor fires as well. 

Table 6. Summary table for all the expeirments that were part of the current analysis 

 
# of frames 

(exp) 
Loss MAE 

(kW) 
R2 

score 

Train 9602 (117) 1356 49 0.99 

Val 3708 (30) 5761 100 0.94 
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4. Image Calorimetry: Impact and Conclusions 

Heat release rate data is usually not available for outdoor fire experiments. This report bridges 
that gap by developing and demonstrating the use of a neural network technique to estimate 
HRR from fire video data. This novel technique termed as “image calorimetry” uses fire video 
data and a neural network technique to predict HRR.  

The neural network model learns from select experiments (training set) that were part of the 
NIST Fire Calorimetry Database (FCD). The trained neural network model was subsequently 
used to predict the time dependent HRR for the experiments that were part of the validation 
set. A total of 147 experiments involving 13,310 images were analyzed. These experiments 
were part of the “Transient Combustibles 2018” and “Multiple Item Transient Combustibles 
2020” projects in the FCD database. Even though the FCD is a nice database, it is a very limited 
one in many regards. For the model to be used in a more general manner, the training should 
be performed on a larger database of experiments with diverse fire scenarios, light conditions 
and camera settings. 
 

Results presented in this paper show good comparison with the time dependent measured HRR 
with an overall accuracy score of 0.93. Our model is based on a recurrent neural network to 
analyze a sequence of images that are part of video, instead of looking at individual images 
only. The image calorimetry approach presented in this paper would improve fire measurement 
science through the development of a novel approach for estimating transient HRR from fire 
images and video, with application to outdoor fire experiments.  

4.1. Image Calorimetry: Opportunities and Challenges 

Heat release measurements are not available for outdoor fires since it is difficult to perform 
oxygen depletion calorimetry on such experiments. For such scenarios, availability of a trained 
neural network model will be critical for estimating heat release rate. Future work will involve 
using the model for real scale outdoor experiments. We plan to extend the analysis to 
“Vegetation Burn” experiment series, that are part of the FCD database.  
 
It would be useful to understand the differences in model predictions for sooty and non-sooty 
fires. It is conceivable that the model could severely under-predict the true HRR for fires that 
are extremely sooty. Training the neural network models to learn from sooty and non-sooty 
fires can help in extending the model to sooty fires. 

Using a single camera to obtain video data can be limiting for fire scenarios where the aspect 
ratio (ratio of breadth to width) is different from one. For example, if a single camera was 
looking at the short end of a line fire, the predicted HRR could be very small. An improvement 
to the model can be in using two or more cameras placed orthogonally to each other, instead of 
using just a single camera to obtain video data.  Having multiple cameras provides the model 
critical information about the width and depth of the fire experiment, which can be completely 
missed by using a single camera. 
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The model can also be extended to other important parameters such as estimating soot yield. 
The proposed methodology is relatively general purpose and can be extended to other 
important fire parameters of interest. It can also be useful to add additional features to the 
model such as heat flux measurements, which can inform the model and improve model 
predictions.  

The effect of camera lenses on the quality of the collected video data can influence model 
predictions. Similarly, the camera location, orientation, zoom and parallax can distort an image, 
leading to errors in the predicted HRR. Estimating the uncertainty introduced by these 
parameters is critical to fully understand the error bars in our predictions.  

From the neural network point of view, further research is needed in the use of sequential 
models with highly non-uniform information distribution. Creating embeddings from the 
images that are rich in context will also help in reducing model over-fitting and reduce 
uncertainties in our predictions. 
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Appendix A. Case study of using Heskestad Equation to predict heat release rate 

The NIST Fire Calorimetry Database (FCD), is an online public resource containing the results of 
fire experiments [1] conducted at the National Fire Research Laboratory (NFRL).  The FCD 
consists of data augmented video, images, and transient heat release rate measurements 
(oxygen depletion calorimetry).  In this section, the inverted form of the Heskestad correlation 
was used to estimate heat release rate from the fire images stored in the FCD database and the 
predictions were subsequently compared with the measured heat release rate (also available 
from the FCD).  

We specifically focus on a calorimetry confirmation experiment with natural gas tube burner. 
This experiment has a name tag of “NGQC_9m_50kgs_8MW” and an ID “1583174916” stored in 
the FCD database. The left sub-figure of Figure 12 shows an image corresponding to the peak 
heat release rate value of 8454 kW as measured using oxygen depletion calorimetry. The 
inverted Heskestad correlation to estimate HRR requires an estimation of the fire height and 
diameter from this image. This can be accomplished by estimating size of the pixels, which in 
turn can be obtained by estimating the number of pixels in an object of known length. The tube 
gas burner shown in Figure 12 (right sub-figure) was used to estimate the size of the pixels.  

 

                    

Figure 12 Left sub-figure shows an image corresponding to the peak heat release rate obtained from the 
calorimetry confirmation experiment (NGQC_9m_50kgs_8MW). The right sub-figure shows the dimensions of 

the 1.5 m tube gas burner that was used during the experiment. 

Measurements were made both in the horizontal and vertical direction.  In the horizontal 
direction, we estimated 175 pixels covering 1.15 m (top row of Table 7). The estimated HRR 
using the inverse Heskestad equation was 1801 kW, which is 79 % lower than the measured 
HRR of 8454 kW. In the vertical direction, we estimated 90 pixels covering 0.95 m (2nd row of 
Table 7). The estimated HRR was 4625 kW, which is 45 % lower than the measured HRR.  

 

Measuring flame length and flame diameter from images is difficult and can result in large 
errors in the estimated HRR. Similar conclusions have been made by other author who have 
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used images to estimate HRR using the Heskestad correlation [18]-[9]. There is clearly a need 
for a more robust method to estimate heat release rate.  

Table 7. Estimation of flame length and flame diameter for the fire shown in Figure 12. The estimated HRR based 
on the inverse Heskestad correlation has been compared with measured HRR. 

Estimated L 
(m) 

Estimated D 
(m) 

Estimated HRR 
(kW) 

Measured HRR 
(kW) 

% 
Error 

3.54 1.15 1801 8454 79 

5.70 1.15 4625 8454 45 

 

A.1. More Challenging Cases 

Figure 13 shows additional cases for which it is even more challenging to estimate heat release 
rate using the Heskestad correlation.  

 

Figure 13. a) Image during burning of a plastic cart with fax, laptop, printer & binder (peak HRR 2502 +- 149 kW) 
b) Burning of very small shed with 6 cribs, 9 minutes after ignition [27], c) Image during burning of a small tree. 

Figure 13a shows an image from burning of a plastic card with fax, laptop, printer and binder. 
During this experiment, a laptop and printer were put on the top level of a two-level plastic 
cart. Ignition occurs at the top level, followed by melt dripping onto the lower level, collapse of 
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the top level and finally a fire that involves both the levels. For this scenario, it is very difficult to 
define the flame length or the flame width that can be used for Heskestad correlation. 

Figure 13b shows burning of a very small shed with 6 cribs [27]. The image was taken 
approximately 9 minutes after ignition. Again, for this scenario, it is very challenging to define a 
flame length and a flame diameter, as there are multiple fires. Uncertainty in defining a flame 
length and flame diameter can result in uncertainty for estimating the heat release rate.  

Finally, Figure 13c shows an image during the burning of a small tree, where defining a flame 
width and flame length can prove to be challenging. It is not clear if the flame width is the base 
of the tree or the widest portion of the image.  

For all these scenarios, use of Heskestad correlation to estimate heat release rate can result in 
significant errors. The availability of a more accurate and robust technique for estimating heat 
release rate for such scenarios is the motivation for this research. 




